
Blockchain Explained – Vehicle Lifecycle Demo Lab Page 1

IBM Blockchain Hands-On
Blockchain Explained
Lab One – Vehicle Lifecycle Lab

Page 2 Blockchain Explained – Vehicle Lifecycle Demo Lab

1. INTRODUCTION TO THE VEHICLE LIFECYCLE LAB .. 3
2. RUNNING THE LAB ... 6

2.1. ORDERING THE CAR ... 6
2.2. MANUFACTURING THE CAR ... 9
2.3. INSURING THE CAR .. 12

3. COOL STUFF ... 17
3.1. INTERNET OF THINGS INTEGRATION .. 17
3.2. ANALYTICS ... 20

4. UNDER THE HOOD .. 23
4.1. MODELLING THE SCENARIO .. 23
4.2. HOW THE APPLICATIONS WORK ... 26

5. NEXT STEPS .. 28
INTRODUCTION TO THE HYPERLEDGER COMPOSER PLAYGROUND LAB .. 30
USING HYPERLEDGER COMPOSER PLAYGROUND .. 31

CAR AUCTION SAMPLE .. 32
1.1.1. OPEN THE PLAYGROUND .. 32
1.1.2. ADD THREE PARTICIPANTS ... 35
1.1.3. ADD AN ASSET ... 39
1.1.4. ADD A VEHICLE LISTING ... 41
1.1.5. SUBMIT OFFERS ON THE VEHICLE ... 43
1.1.6. CLOSING THE BIDDING ... 46

EXPLORE THE EDITOR VIEWS ... 48
1.1.7. MODEL FILE ... 48
1.1.8. TRANSACTION PROCESSORS .. 50
1.1.9. ACCESS CONTROL LIST ... 52

UPDATING THE MODEL (ADVANCED AND OPTIONAL)... 53
EXPORT THE BUSINESS NETWORK ARCHIVE ... 53

INTRODUCTION TO HYPERLEDGER COMPOSER DEVELOPMENT LAB .. 56
WHERE TO START WITH HYPERLEDGER COMPOSER DEVELOPMENT? ... 56
SECTION 1: INSTALLING HYPERLEDGER COMPOSER DEVELOPMENT TOOLS .. 57
SECTION 2: HYPERLEDGER COMPOSER DEVELOPER AND QUERIES TUTORIAL... 58
INTRODUCTION TO THE HYPERLEDGER FABRIC LAB .. 60
WRITING YOUR FIRST HYPERLEDGER FABRIC APPLICATION ... 61
APPENDIX A. KEYBOARD LANGUAGE CHANGE .. 64
APPENDIX B. NOTICES .. 66
APPENDIX C. TRADEMARKS AND COPYRIGHTS ... 68

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 3

1. Introduction to the Vehicle Lifecycle Lab

This lab allows you to experience a blockchain solution from the point of view of a set of end-users, and in doing
so learn about key blockchain concepts. It is not meant to be a technical introduction to blockchain, but will
instead focus on the properties of the business network and value that blockchain brings.
The use-case we will work through is one that demonstrates the lifecycle of a new car, from the manufacturing
and purchasing through to delivery and insurance. It is a good blockchain use-case because there is a defined
business network and an identifiable need for trust between the participants of the network.
In this lab, you will be playing the role of the four personas who use the vehicle lifecycle system:

- Paul - the buyer/owner of a car
- Mike - an employee for the car manufacturer (“Arium”)
- Debbie - an administrator for the regulator called the Vehicle & Drivers Authority (VDA)
- Tommen - an Insurer from an insurance company called Prince

These personas together work on ordering, building, transferring ownership of a vehicle while keeping all the
other parties in the network updated and building the trust between them to allow them to work together
efficiently.
In this lab, each user’s application will be represented by a separate tab in our web browser; of course, in a real
blockchain network they each user will be running on different systems in different locations, although all
connecting in to the same (but distributed) blockchain network.

Start here. Instructions are always shown on numbered lines.

1. If it is not already running, start the virtual machine for the lab. The instructor will tell you how to do this
if you are unsure.

2. Wait for the image to boot, and for the blockchain application and associated services to start. This
happens automatically but might take several minutes. The image is ready to use when the web browser
is visible and eight tabs fully loaded, as per the screenshot below.

Page 4 Blockchain Explained – Vehicle Lifecycle Demo Lab

While the virtual machine is starting, let’s recap a few blockchain concepts and introduce the scenario.

The most generally accepted definition of a blockchain is of a shared, replicated ledger.

Ledgers have been around for hundreds of years and are records of what a business has done. They’re
important systems of record because they describe a business’s inputs and outputs and thereby give an
indication of its worth. Essentially, they are a log of transactions – a transaction being a change in state
of an asset.

The problem with ledgers is that each one is owned by a single business, which means that when one
business transacts with another, ledgers can get out of sync. What happens when the transaction I’ve
recorded on my ledger doesn’t tally with the transaction you’ve recorded on your ledger? Disputes
inevitably occur which need to be resolved through a reconciliation process. This can be slow and
expensive.

By having a shared ledger it means that all participants of the business network see the same ledger. By
replicating it across the business network, it means that the ledger is not held in any one single place,
which would otherwise make it vulnerable to outages and malicious attack.

Consider the business network that surrounds the purchase and ownership of a car. Today, each
participant (for example, manufacturer, insurer or regulator) has their own ledger and the processes
that allow them to interact with each other varies from company to company, and can be time
consuming to complete. Connectivity between participants is typically done point-to-point using a
variety of processes – some manual or slow (e.g. sending a letter), and some automated (e.g. file, REST
API, B2B messaging). This plethora of processes is expensive to maintain and can be vulnerable to
attack.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 5

In this scenario we will replace these disparate ledgers with a single blockchain, and the individual
business processes with a single shared one. By doing this we will make the overall process much
quicker and less prone to error.

We will experience the solution through the eyes of four key members of the business network: a
private purchaser, the manufacturer, the regulator and the insurer.

We will start by looking at the ordering process, as experienced by the buyer.

Page 6 Blockchain Explained – Vehicle Lifecycle Demo Lab

2. Running the lab

2.1. Ordering the car

3. If it is not already selected, Switch to the “Ionic App” tab on the web browser (running at
localhost:8100).

Note that Paul’s web page is intended to be viewed as a mobile app; you might want to ungroup this tab
from the others by dragging the tab’s title bar off from the others, and resizing the window to make it
easier to view and navigate as a mobile app.

4. In Paul’s app, click ‘Build Your Car’.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 7

5. Swipe left and right to decide which car to build, and then decide the options on Paul’s car.

6. Once you have decided on each of Paul’s options, click ‘Purchase and Build’.

7. Once you place the order, switch to the “Blockchain – VDA” tab (localhost:6001/dashboard).

As you will recall, the VDA is the regulator who requires notification of all transactions that occur within
the business network. Debbie, who works for the regulator, has a dashboard running on her PC that
shows all transactions as they occur.

You will immediately see the VDA dashboard update itself with the latest transaction.

Page 8 Blockchain Explained – Vehicle Lifecycle Demo Lab

If you look at the “Recent Transactions” log at the bottom of the page, you will see two new transactions
listed: a “PlaceOrder” transaction submitted by Paul Harris, and an “UpdateOrderStatus”
acknowledgement from Arium Vehicles, our manufacturer.

Look in the blue section above this log and you will see those transactions represented graphically as a
chain, with the most recent transactions on the right. This is a representation of our blockchain, and the
regulator can see everything that is stored on it.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 9

As you will recall, the blockchain is our transaction log which is shared (with appropriate privacy and
permissioning) between the participants of our business network. Each block in this chain could
potentially actually contain multiple transactions, but here you’ll just see each unique transaction inside
its own block.

8. Click on ‘Asset activity’ within the VDA dashboard.

This is an alternative view of the ledger that shows all the transactions that have occurred, and the
participants involved.

2.2. Manufacturing the car

9. Switch to the “Blockchain – Manufacturer” tab (localhost:6002/dashboard).

This is the dashboard that Mike, who works for Arium, uses. He does not have full visibility into the
entire blockchain that the regulator requires, but can see the parts of it that pertain to Arium:
specifically, he has visibility into all the orders that are coming in so that he can control the
manufacturing process.

Page 10 Blockchain Explained – Vehicle Lifecycle Demo Lab

The “Currently in Production” section of this page shows those orders that have been received and the
cars that have recently been built. The left-most order in this section will be the car that Paul recently
ordered.

10. Click Start Manufacture underneath Paul’s order to start the business process to build a car.

The production process has (of course) been simulated and will take place over the next several
seconds; the vehicle will be ‘built’ and blockchain transactions submitted that record status at key
milestones of the production process. In a real network, different automated plant systems will trigger
these events, which are signed off by the manufacturer, and the issuance of the Vehicle Identification
Number might be signed off by the regulator.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 11

11. As the car is being built, switch back to the VDA dashboard to see these key milestones being
represented on the unfiltered blockchain.

Page 12 Blockchain Explained – Vehicle Lifecycle Demo Lab

12. Also note how the Manufacturer’s view changes as the vehicle is being built, with icons changing to
green as those parts of the process are completed.

2.3. Insuring the car

As Paul takes ownership of his new car, we will give him the option to insure it. His insurance company offers a
discount if he chooses to provide the insurance company with frequent details of the car’s location and other
things.
The manufacturer fits the car with a collection of IoT devices, including GPS, air and engine temperature sensors,
acceleration information and light information, which can give the insurer information on how the car is being
driven, and potentially alert relevant parties if the car is involved in a crash.

13. Switch to the Insurer dashboard (localhost:4200/overview). Ensure that the ‘Overview’ tab is selected.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 13

Tommen works for Prince Insurance and this is his dashboard. He requires another subset of
information from the blockchain and this view is represented here. He can see information on the cars
for which his company is an insurer, and can also approve new polices. (In reality, this latter part can be
automated.)

14. Switch back to our car buyer’s “Ionic App”. After the car has been delivered scroll down to the bottom,
and click the “Insure Me” button.

15. Click “Allow Location Access” if a popup appears; Paul is willing to share the IoT device’s location with
the insurance company.

16. Switch back to the “Insurer” view (localhost:4200/overview).

17. Click the “Approve Insurance” button.

Page 14 Blockchain Explained – Vehicle Lifecycle Demo Lab

18. Wait for the approval to be logged on the blockchain.

Paul is now insured by the insurance company.

19. Review the ‘Customers’ tab to see details of Paul’s policy.

At the top of the page you can see basic details of Paul’s policy including his address and car information.

Underneath this is the set of raw readings from the IoT devices attached to Paul’s car. This is useful information
for debugging; in reality the blockchain is not used to share complete data streams from the IoT sensors as the
amount of data is too great and is not relevant to be shared in its entirety.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 15

However, what would be relevant is the analysis of key events in the IoT stream. For example, if the acceleration
is shown to be greater than (for example) 2G, this might indicate a crash event that the insurer might care
about.

This is shown as a set of alerts on the right hand side of the insurer’s customer view:

Without a real sensor tag connected into the application, the information displayed here is either blank or
mocked up. In the next section we will inject data into the application using internet of things integration.

Page 16 Blockchain Explained – Vehicle Lifecycle Demo Lab

It is possible to connect a real sensor tag so that its information is
displayed in the Insurer view; we have tested using a Texas Instruments
SimpleLink Bluetooth SensorTag. To use this, you need to download the TI
SimpleLink Starter app to a nearby mobile device, use it to discover the
sensor via Bluetooth, note down the unique address of the tag and enable
the “Push to cloud” option to submit the sensor readings so that they can
be read by the IBM Watson IoT platform. Then you need to update the
“IBM IoTP Test Device” node in the Node-RED flow to monitor the readings
from the unique address of the tag from the cloud. Remember to redeploy
the Node.RED flow.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 17

3. Cool Stuff

In this section, we’re going to look at how the scenario can be enhanced by bringing blockchain
together with internet of things and analytics.

3.1. Internet of Things Integration

We will start by looking at how sensor data from the car makes its way into the blockchain. To
do this we will use an integration tool called Node-RED. This includes a graphical interface to
describe how data flows from input sources (e.g. a sensor) to output sources (e.g. the
blockchain).
Node-RED has connectors for sending data to, and receiving data from, a blockchain running
Hyperledger Composer. It also has connectors for receiving data from the IBM Watson IoT
platform (for sensor tag integration). We can also generate fake sensor data for testing, in the
absence of a physical sensor device.

20. Switch to the Node-RED tab (localhost:1880).

The main window shows the flow of how data from devices is mapped to blockchain events. The tabs
along the top show the different flows that are deployed. Down the left hand side you can see the
available connectors for wiring into the flow. The right hand-side contains the properties of the selected
connector and debug information.

(Note that if you make any changes to the flow, you need to press the “Deploy” button to let them take
effect.)

21. Ensure that the “IoT Flow” tab in Node-RED is selected.

Page 18 Blockchain Explained – Vehicle Lifecycle Demo Lab

There are some interesting things to note in this flow.

22. Look at the “IBM IoTP Test Device” to “Submit AddUsageEvent TX” flow. This takes readings from a real

sensor device and publishes any interesting events to the blockchain.

23. Double click the “Set Contexts” connector.

This shows the thresholds for sending interesting events to the blockchain. For example, if the
acceleration is greater than 2.2G, this causes a crash event to be sent to the blockchain.

24. Look at the set of connectors next to the “DEBUGGING INPUTS” section: PUSH CONNECT ATTEMPT,

PUSH OVERHEATED, PUSH OIL FREEZING and PUSH CRASH.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 19

These connectors allow us to simulate an interesting event occurring, in the absence of a real device.

25. Click the rounded square button next to the PUSH CONNECT ATTEMPT connector.

You should see a message saying that data was successfully injected into the flow.

26. Switch to the Insurer tab (localhost:4200), and notice under “Sensor Test” that the vehicle sensor is now

connected.

Page 20 Blockchain Explained – Vehicle Lifecycle Demo Lab

27. Switch back to the Node-RED tab (localhost:1800), and click the button next to the PUSH OVERHEATED

node to send an event to the blockchain which denotes Paul’s engine overheating.

You should again see a “Successfully injected” message.

28. In the Insurer view you should see an alert that reveals this event to the insurer.

29. Try invoking the other events too (OIL FREEZING, CRASH) to see their effect.

More details on the IBM Watson IoT Platform can be found on a pre-loaded tab in the web browser
(https://i5l9uv.internetofthings.ibmcloud.com/dashboard/#/ibmssolanding).

3.2. Analytics

It is possible to use the information stored on the blockchain to provide insight on aggregate usage
patterns to interested authorized parties. This gives the power of data analytics on top of the benefits of
a blockchain, as a verifiably clean source of information to analyze.

30. Switch back to the Manufacturer view tab (localhost:6002) and click the “Reports” link.

The engine overheated events show in this view. These events were captured in the blockchain and the
manufacturer role has permission see this type of event. The manufacturer wishes to detect trends in
engine overheated failures in order to determine if a factory defect is causing this condition.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 21

 The regulator in this scenario can also run analytics on the transactions on the blockchain to look for

suspicious behavior that the smart contract was not designed to prevent from a single invocation.

31. In the Vehicle & Driver Authority dashboard (localhost:6001/dashboard) click the “Suspicious Vehicles”
tab near the top.

 Here we can see that by performing analytics on the blockchain dataset, we have found a number of

vehicles with associated suspicious transactions that may warrant further investigation.

32. Click on ‘Mileage anomaly’ in the list of suspicious vehicles.

Page 22 Blockchain Explained – Vehicle Lifecycle Demo Lab

This shows a list of the transactions that are associated with this anomaly. In this instance, the mileage
of the vehicle may not match with insurance records - or has even has decreased from previous
records.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 23

4. Under the Hood

In the final section of the lab, we will briefly consider how the scenario was put together. If you
wish to find out more about the tools used to create this application, consider completing a
follow-on lab; ask the instructor for details.

4.1. Modelling the Scenario

All blockchain use-cases can be described in terms of a set of assets (the digital representation of some
tangible or intangible object that holds value), participants (who wish share information with other
participants in a trustworthy way) and transactions (which cause the assets to change state).

In our example, the primary asset is the car (obviously), the participants are the owner, manufacturer,
regulator and insurer, and as we’ve seen, there are several transaction types as the car moves through
its lifecycle.

These assets, participants and transactions can be modelled in a Linux Foundation tool called
Hyperledger Composer, and leveraged through the IBM Blockchain Platform.

It is useful to develop a model of these concepts as it provides a neat abstraction layer between the
business problem being solved and the technical complexities of the underlying blockchain – in much
the same way as a compiler shields the programmer from the details of the underlying machine code.

33. Switch to the Hyperledger Composer Playground tab in the web browser (localhost:8001/login).

34. Dismiss the welcome dialog by clicking “Let’s Blockchain!”.

35. Scroll to the bottom of the “My Wallet” screen to see details of our deployed blockchain network
(vehicle-lifecycle-network. Click ‘Connect now’.

Page 24 Blockchain Explained – Vehicle Lifecycle Demo Lab

Once the Playground has connected to the blockchain, you will see details of the vehicle lifecycle
network.

Along the top of the screen are two tabs: “Define” which shows the files used to model the network,
and “Test” that allows authorized users (an administrator “admin” - by default) to invoke transactions.

36. With the Define tab selected, click the filenames down the left hand side of the screen to view the

contents of the files that comprise the model, transaction logic, access control lists and documentation.

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 25

We will go into details of what these files do in a follow-on lab.

37. With the Test tab selected, click the registries down the left hand side of the screen to view the
instances of the assets, participants and transactions that have been created, and their current state.

38. Click ‘All Transactions’ to view the Transaction Historian. This shows you every transaction that has been
recorded on the blockchain that the current user (‘admin’) has authority to see.

39. Click on any transaction to view details of it.

Page 26 Blockchain Explained – Vehicle Lifecycle Demo Lab

4.2. How the Applications work

While the Playground can be used to test our blockchain scenario, our end-users use mobile apps and
dashboards to interact with the running blockchain.

From the files that model this network and implement the transactions, Hyperledger Composer can help
this in two ways. Firstly, the models can be used to create skeleton applications that make it easier to
develop the end-user applications. Secondly, the models can also be used to generate RESTful APIs that
allow client applications and integration middleware to interact with the blockchain.

We will now look at the set of RESTful APIs that have been generated for this scenario.

40. Select the Hyperledger Composer REST server tab (localhost:3000/explorer).

Blockchain Explained – Vehicle Lifecycle Demo Lab Page 27

This view shows the REST interface that has been generated from the deployed vehicle lifecycle model.
End-user applications and integration middleware can invoke these applications by sending HTTP
requests that invoke these APIs.

This is how the Node-RED flows interact with the blockchain. Our end-user applications (Paul’s mobile
app, the VDA view, Insurer dashboard etc.) can also interact in this way, although it is possible for
Javascript client applications to instead import (require) a Javascript module that interacts the
blockchain in a similar way.

41. Review the different APIs available; feel free to try invoking them from the web front end to see what

effect it has on the blockchain, on end-user applications and on Playground views.

Page 28 Blockchain Explained – Vehicle Lifecycle Demo Lab

5. Next Steps

In this lab you have experienced a live blockchain solution through the eyes of four participants of a
vehicle network: a buyer/owner, manufacturer, regulator and insurer. A blockchain can be used to
great effect in this business network because there is a clear need to share information and value in
participants being able to trust the information they see.

Where you go from here is up to you.

If you have a technical background, consider finding out more about the Hyperledger Fabric and
Composer technologies and the blockchain development experience. For no charge you can sign up to
the IBM Blockchain Platform to play more with the blockchain technology and implementing your first
use-case.

If you are interested in the potential benefits of blockchain in your business, IBM has a bunch of
services that can help. Start by going to www.ibm.com/blockchain.

42. Cleanup the hyperledger fabric environment for subsequent labs. Perform the following at the
command prompt in the VLD directory:

a. Open a terminal window
b. cd VLD
c. ./stopAll.sh

Congratulations on completing the lab!

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 29

IBM Blockchain Hands-On
Blockchain Composed
Lab Two – Hyperledger Composer Playground Lab

Page 30 Blockchain Composed – Hyperledger Composer Playground Lab

Introduction to the hyperledger composer playground lab

Skill requirements:

• There are no skill prerequisites to completing the first section called ‘Car Auction Sample’. It is
desirable but not essential to have some background knowledge of JavaScript for the later
section called ‘Explore the Editor Views’.

Technical pre-requisites:

• Internet Connection
• Web browser

This section of the lab takes place entirely in the web browser using Hyperledger Composer
Playground.

Playground simulates the entire blockchain network within the browser by providing a sandpit
environment to define, test and explore business networks defined using Composer. It is possible to
connect to a live blockchain Hyperledger Fabric instance, or install the Composer Playground on a local
machine for more developer friendly tools.

Hyperledger Composer Playground is one method to use Hyperledger Composer, other methods are
also available at https://hyperledger.github.io/composer/installing/installing-index.html.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 31

Using Hyperledger Composer Playground
Hyperledger Composer (https://hyperledger.github.io/composer) is an open-source set of tools
designed to make building blockchain applications easier.

It allows users to model the business networks, assets and transactions that are required for blockchain
applications, and to implement those transactions using simple JavaScript functions. The blockchain
applications run on instances of Linux Foundation Hyperledger Fabric (www.hyperledger.org).

The purpose of this lab is to introduce you to the concepts of a blockchain by showing you how a
blockchain transfers assets between participants in a business network. We will use the implementation
of a simple blind car auction as the scenario for the demo.

The car auction business network has a set of known participants (buyers and sellers), assets (cars
and car listings) and transactions (placing bids and closing auctions). We will model these using
Hyperledger Composer Playground and test the business logic that makes the auction work.

Crucially, a blockchain could be used to bring together the buyers and sellers of these assets without
needing any trusted third party. However, an auctioneer could be used to provide visibility and
governance of the network if required.

Page 32 Blockchain Composed – Hyperledger Composer Playground Lab

Car Auction Sample

1.1.1. Open the Playground

1. Open a web browser and go to http://composer-playground.mybluemix.net. Dismiss the

welcome screen to show the playground wallet screen which is used to connect and deploy new
business networks:

2. Click the “Deploy a business network” box. Then scroll down and select the carauction-network:

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 33

3. Next give the business network a name and description:

4. Click the Deploy button to deploy the new car auction business network:

Page 34 Blockchain Composed – Hyperledger Composer Playground Lab

5. Click “Connect now” in the new identity card for the carauction network:

6. Take a few minutes to read through the description of the car auction sample, to help
understand the participants, assets and transactions associated with this particular network.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 35

1.1.2. Add Three Participants

In the next section we will now work with the deployed car auction blockchain network.

We will first instantiate three Member participants of the car auction business network:

• Alice Smith (alice@email.com), who will make a bid on a car,
• Bob Jones (bob@email.com), who will also make a bid on a car, and
• Charlie Brown (charlie@email.com), who currently owns a car.

We will not instantiate an Auctioneer in this demo; this could be used in order to provide
oversight of the network, although is not necessary.

7. Click the Test tab and then click on the Member participant registry:

The registry is empty as no members have currently been defined.

8. Click on Member to view there are no current members in the environement

Page 36 Blockchain Composed – Hyperledger Composer Playground Lab

9. Click Create New Participant to add a new Member.

10. Type the correct values into the JSON data structure to add Alice to the business network. Let’s
give her a starting balance of 10000.

11. Click Create New to add Alice to the registry.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 37

12. Do the same for Bob. Let’s give him a starting balance of 5000.

Page 38 Blockchain Composed – Hyperledger Composer Playground Lab

13. Finally do the same for Charlie. He hasn’t got so much money (he’s selling his car, after all) so

let’s give him a starting balance of 100.

14. Verify that all participants in the business network have been correctly defined. Use the

appropriate Edit button () to make any changes.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 39

1.1.3. Add an Asset

We will now add Charlie’s car to the Vehicle Asset registry.

15. Click the Vehicle asset registry.

16. This registry contains no assets currently. Click the Create New Asset button to add a new
asset.

17. Instantiate the car by adding a vehicle identification number (VIN) of 1234 and assign it to
Charlie by filling in the JSON object as follows. (We use his email address to identify him; this
was specified as the key field in the User definition using the ‘identified by’ statement.)

18. Click Create New to add the new vehicle to the registry.

Page 40 Blockchain Composed – Hyperledger Composer Playground Lab

19. View your newly added asset in the registry.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 41

1.1.4. Add a Vehicle Listing

In this section we will put the car up for sale by creating a VehicleListing instance.

20. Click the VehicleListing asset registry. Once more, the VehicleListing registry should be empty.

21. Click the Create New Asset button to add the asset.

22. Update the fields and remove the random offers to show the below. Syntactic validation of the

object occurs at this point, so correct any errors if necessary.

23. Click Create New to add the new vehicle listing to the registry.

Page 42 Blockchain Composed – Hyperledger Composer Playground Lab

24. View the listing in the registry.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 43

1.1.5. Submit offers on the vehicle

We will now let Alice and Bob bid on the vehicle.

25. Click on the Submit Transaction button

26. Let Alice put in a bid of 6000.

27. Click Submit to submit the offer transaction.

Page 44 Blockchain Composed – Hyperledger Composer Playground Lab

28. See the transaction successful appear in the Historian registry. Swich to view all transactions by

clicking ‘All Transactions’:

29. You will also notice additional transactions for creating participants and assets. Click “view
record” for more information.

30. Let Bob put in a bid of 4000.

31. Verify the transactions in the registry.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 45

Note that the transactions cannot be edited or individually deleted once submitted; this is one of
the defining characteristics of a blockchain.

Page 46 Blockchain Composed – Hyperledger Composer Playground Lab

1.1.6. Closing the bidding

To close the bidding on the listing we need to submit a CloseBidding transaction.

32. Submit a new transaction, this time selecting CloseBidding from the drop-down ‘Transaction
Type’ field.

33. Click Submit to submit the CloseBidding transaction.

34. Verify that the transaction has been added to the blockchain transaction registry. Click on ‘view
record’ to see the content of the transaction.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 47

Based on the bids we submitted, Alice should now be the owner as she put in the highest bid.
We should also be able to verify that the owner of the car has changed and appropriate
balances increased or decreased accordingly.

35. Go to the Vehicle asset registry to see the vehicle owner has been updated to Alice.

36. You will see the following vehicle owned by Alice in the vehicle registry.

Page 48 Blockchain Composed – Hyperledger Composer Playground Lab

37. Go to the Member asset registry to see that Charlie’s balance has increased by the winning bid
amount, and that Alice’s balance has decreased by the same.

Congratulations! You have completed the first part of this lab.

Explore the Editor Views

1.1.7. Model File

38. Click on the define tab to go back to the main playground window.

39. Click the Model File (models/auction.cto) to open it.

This .cto file models the assets, participants and transactions for this blockchain application.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 49

40. Look at the Vehicle asset:

This uses the Hyperledger Composer Modeling Language which will be looked at more later.
An asset is anything of worth that will be transferred around the blockchain. Here we can see
the asset class is called ‘Vehicle’ and will have an associated vin and a reference (indicated by
“-->”) to a ‘Member’ participant that we will call ‘owner’.

41. Type and add some characters in an appropriate point to show the live validation of the model.

42. Scroll down and look at the abstract ‘User’ participant.

The participant will be the people or companies within the business network. Each User
participant will be defined as having a email, firstName and lastName. As the class is abstract
instances of it cannot be created; instances are instead implemented by the Member and
Auctioneer classes.

Page 50 Blockchain Composed – Hyperledger Composer Playground Lab

Here the user can become a Member requiring a balance, or an Auctioneer that does not.

43. Look at the Offer and CloseBidding transaction definitions:

The transaction definitions give a description of the transactions that can be performed on the
blockchain. They are implemented in a Transaction Processor file using the Javascript
language.

1.1.8. Transaction Processors

44. Click on the lib/logic.js file:

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 51

45. Scroll to the bottom of the file to review the logic used to make an offer on a car being
auctioned:

This implements the makeOffer function, which is executed when the Offer transaction is
invoked on the blockchain. (It is the @param comment above the function that links the full
transaction name as defined by the model to the Javascript method that implements it.)

Other Interesting areas of the function implementation include:

a) The logic that the vehicle must be for sale to submit an offer on it
b) The retrieval and update of the asset registry a few lines later
c) Saving the updated asset back to the registry

Page 52 Blockchain Composed – Hyperledger Composer Playground Lab

1.1.9. Access Control List

The final file that defines the blockchain application is the Access Control List, which describes
the rules which govern which participants in the business network can work with which parts of
the blockchain.

46. Click the permissions.acl file:

47. Look at the ACL rules defined:

The rule allows or denies users to access aspects of the blockchain.

IBM Blockchain

Blockchain Composed – Hyperledger Composer Playground Lab Page 53

Updating the Model (Advanced and Optional)

48. Try updating the model (auction.cto) for the Vehicle asset definition to include manufacturer
make and model fields. Add in new String fields and click ‘Deploy’ to make the changes live.

Note that when you update the model, the syntax of any existing assets in the registry must be
compatible with the new model. Use either the optional or default=”…” qualifiers next to the
new fields. If you make incompatible changes, you must first reset the demo.

Once you’ve deployed the changes, try adding new Vehicle assets to the registry to test the
changes.

For more information on the Hyperledger Composer modelling language please refer to:
https://hyperledger.github.io/composer/reference/cto_language.html

Export the Business Network Archive

49. Exporting to a Business Network Archive will save the Read Me, Model File(s), Script File(s)

and Access Control rules that can be easily imported to a local developer enviroment, handed to
a network operator to deploy to a live network or saved asa backup. More details on local
installation at https://hyperledger.github.io/composer/installing/installing-index.html.

Congratulations! You have completed this lab.

Page 54 Blockchain Composed – Hyperledger Composer Playground Lab

IBM Blockchain

Blockchain Composed – Hyperledger Composer Developer Lab Page 55

IBM Blockchain Hands-On
Blockchain Composed
Lab Three – Hyperledger Composer Developer Lab

IBM Blockchain

Blockchain Composed – Hyperledger Composer Developer Lab Page 56

Introduction to hyperledger composer development lab
The purpose of this lab is to introduce you to the Hyperledger Composer development environment. It
is intended to be run on any machine that can meet the Hyperledger Composer specification.

Operating Systems: Ubuntu Linux 14.04 / 16.04 LTS (both 64-bit), or Mac OS 10.12
Docker Engine: Version 17.03 or higher
Docker-Compose: Version 1.8 or higher
Node: 6.x (note version 7 is not supported)
npm: 3.10.x
git: 2.9.x
A code editor of your choice, we recommend VSCode.

Where to start with hyperledger composer development?

Section 1 will lead you through the installation instructions for Hyperledger Composer and Hyperledger
Fabric.
Section 2 will lead you through the creation, deployment and testing of a sample business network
application. It will also show you how to generate a REST interface.

If you are running on a machine that has not been configured for Hyperledger Composer (for example,
your personal laptop), then install the pre-requisites above and then start with Section 1.

If you are running on a machine that is provided for you as part of a classroom environment, your
instructor will tell you where to begin this lab.

IBM Blockchain

Page 57 Blockchain Composed – Hyperledger Composer Developer Lab

Section 1: Installing hyperledger composer development tools
The master copy of the instructions for this section are online. It is recommended that you use the
online version where possible, as this may contain updates to the instructions.

1. Optionally just read thru the material on the Web page below for your own reference.
These steps have already been performed for you on the VMWare image. Bring up a web
browser and navigate to the following page:

https://hyperledger.github.io/composer/latest/installing/development-tools

2. Read thru the material in the link above but do not perform any of the steps.

3. Once you have been able to successfully start the fabric and create a composer profile, you will
have completed this section. Run the following shell commands and scripts to ensure the
containers are started and the environment is ready for you:

__a. cd ~/fabric-dev-servers
__b. export FABRIC_VERSION=hlfv11
__c. ./teardownFabric.sh
__d. ./startFabric.sh
__e. ./createPeerAdminCard.sh
__f. cd ~

IBM Blockchain

Blockchain Composed – Hyperledger Composer Developer Lab Page 58

Section 2: hyperledger composer developer and queries Tutorial
The master copy of the instructions for this section is online. The online site allows you to more easily
copy and paste snippets of text, which is necessary for some of the steps.

4. Bring up a web browser and navigate to the following page:

 https://hyperledger.github.io/composer/latest/tutorials/developer-tutorial.html

Follow the instructions contained within this page starting at the Create a business network
structure section. Ensure your terminal window is open to the /home/blockchain directory as
subdirectories will be created in that directory. There is no need to install Hyperledger
Composer or the Visual Studio Code Editor since the VMWare image has this installed for you.
For Step 2: Defining a Business Network, launch the Visual Studio Code editor on your desktop

using the icon to edit source artifacts. Within Visual Studio Code editor, select Open
Folder from the File menu, and browse to the tutorial-network directory
(/home/blockchain/tutorial-network) created in Step 1 of the tutorial.

5. Bring up a web browser and navigate to the following page:

 https://hyperledger.github.io/composer/latest/tutorials/queries

Follow the instructions contained within this page. Once you have been able to successfully
validate you only have one commodity, you will have completed this section. Be sure to
complete step 6 below to clean up the environment before moving on to the next lab.

6. Cleanup the Hyperledger Fabric environment for the next lab. Perform the following steps:

__a. Enter control-C at the terminal window where the composer-rest-server is
running to stop the server.

__b. cd ~/fabric-dev-servers
__c. export FABRIC_VERSION=hlfv11
__d. ./stopFabric.sh
__e. ./teardownFabric.sh

IBM Blockchain

Page 59 Blockchain Composed – Hyperledger Composer Developer Lab

IBM Blockchain Hands-On
Blockchain Explored
Lab 4 – Hyperledger Fabric Lab

IBM Blockchain

Blockchain Composed – Hyperledger Fabric Lab Page 60

Introduction to the hyperledger fabric lab
The purpose of this lab is to enable you to write your first blockchain application by introducing you to
the Hyperledger Fabric SDK.

Prerequisites

The lab can be run on any supported level of Mac OSX, Linux and Windows machines. A browser and
internet connectivity is required to complete the lab.

Please note that as several hundred MBs in the form of docker images will be downloaded, suitable
internet bandwidth and disk space is required.

The following prerequisite software are also required:

• Git commandLine
• cURL (or Windows equivalent)
• Docker
• Docker Compose
• Node.js

It is important to ensure the correct versions of Docker, Docker Compose and Node.js are installed.
Incorrect versions will lead to random errors. Please follow directions on this page for installing the
correct versions: http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

IBM Blockchain

Page 61 Blockchain Composed – Hyperledger Fabric Lab

Writing your first Hyperledger Fabric application
The master copy of the instructions for this lab are online. It is recommended that you use the online
version where possible, as this may contain updates to the instructions. The online site also allows you
to more easily copy and paste snippets of text, which is necessary for some of the steps.

1. Bring up a web browser and navigate to the following page:

http://hyperledger-fabric.readthedocs.io/en/latest/write_first_app.html

You will also need to open a terminal window.

It is recommended that you open the browser side-by-side with the terminal screen, as you will
be working from the browser page and following the instructions in the terminal window.

2. Execute the following to clone the fabcar examples:
__a. cd ~
__b. curl -sSL https://goo.gl/6wtTN5 | bash -s 1.1.0
__c. cd ~/fabric-samples/fabcar
__d. edit the package.json file with the vi editor or VS Code
__e. modify dependencies section so it uses explicit package versions as follows:

"dependencies": {
"fabric-ca-client": "1.1.0",
"fabric-client": "1.1.0",
"grpc": "1.10.1"

IBM Blockchain

Blockchain Composed – Hyperledger Fabric Lab Page 62

3. Follow all the instructions contained within the tutorial starting at the Install the clients & launch the
network. Do not visit the prerequisites page as the prereqs have been installed for you. Ensure your
terminal window is initially open to the /home/blockchain directory. Once you have successfully run the
query.js and invoke.js applications to transfer ownership of a car, you will have completed the lab

Page 63 Blockchain Composed

Blockchain Page 64

Appendix A. Keyboard Language Change
To change the keyboard language to enable you to use foreign laptops follow these steps:

Click on the icon in the top right & select Text Entry Settings...
Select the symbol

Type your Language (E.G. English) and then country (E.G. US)
Select the appropriate keyboard and click ‘Add’

Close the Settings box

Page 65 Blockchain

Select the ‘EN’ in the top right of the screen and select your new keyboard

 Your keyboard is now ready to use

Blockchain Page 66

Appendix B. Notices
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.
IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan
The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for convenience only and do not
in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not
part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.
Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.
Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

Page 67 Blockchain

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.
This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental. All references to fictitious companies or
individuals are used for illustration purposes only.
COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Blockchain Page 68

Appendix C. Trademarks and copyrights
The following terms are trademarks of International Business Machines Corporation in the United
States, other countries, or both:

IBM AIX CICS ClearCase ClearQuest Cloudscape

Cube Views DB2 developerWorks DRDA IMS IMS/ESA

Informix Lotus Lotus Workflow MQSeries OmniFind

Rational Redbooks Red Brick RequisitePro System i

System z Tivoli WebSphere Workplace System p
Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications
Agency which is now part of the Office of Government Commerce.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of The Minister for the Cabinet
Office, and is registered in the U.S. Patent and Trademark Office.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other
countries, or both and is used under license therefrom.

Page 70 IBM Software

© Copyright IBM Corporation 2018.

The information contained in these materials is provided for

informational purposes only, and is provided AS IS without

warranty of any kind, express or implied. IBM shall not be

responsible for any damages arising out of the use of, or otherwise

related to, these materials. Nothing contained in these materials is

intended to, nor shall have the effect of, creating any warranties or

representations from IBM or its suppliers or licensors, or altering

the terms and conditions of the applicable license agreement

governing the use of IBM software. References in these materials

to IBM products, programs, or services do not imply that they will

be available in all countries in which IBM operates. This

information is based on current IBM product plans and strategy,

which are subject to change by IBM without notice. Product

release dates and/or capabilities referenced in these materials may

change at any time at IBM’s sole discretion based on market

opportunities or other factors, and are not intended to be a

commitment to future product or feature availability in any way.

IBM, the IBM logo and ibm.com are trademarks of International

Business Machines Corp., registered in many jurisdictions

worldwide. Other product and service names might be trademarks

of IBM or other companies. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

